quarta-feira, 26 de março de 2014

PARADOXO DE ZENO


O que é um paradoxo? 

Um paradoxo é uma declaração aparentemente verdadeira que leva a uma contradição lógica, ou a uma situação que contradiz a intuição comum. Em termos simples, um paradoxo é "o oposto do que alguém pensa ser a verdade". A identificação de um paradoxo baseado em conceitos aparentemente simples e racionais tem, por vezes, auxiliado significativamente o progresso da ciência, filosofia e matemática.

É contado sob a forma de uma corrida entre Aquiles e uma tartaruga. Aquiles, o herói grego, e a tartaruga decidem apostar uma corrida. Como a velocidade de Aquiles é maior que a da tartaruga, esta recebe uma vantagem, começando a corrida bem a frente da linha de largada de Aquiles. Aquiles nunca sobrepassa à tartaruga, pois quando ele chegar à posição inicial A da tartaruga, esta encontra-se mais a frente, numa outra posição B. Quando Aquiles chegar a B, a tartaruga não está mais lá, pois avançou para uma nova posição C, e assim sucessivamente, ad infinitum.

Em termos matemáticos, seria dizer que o limite, com o espaço entre a tartaruga e Aquiles tendendo a 0, do espaço de Aquiles, é a tartaruga. Ou seja, ele virtualmente alcança a tartaruga, mas nessa linha de raciocínio, não importa quanto tempo se passe, Aquiles nunca alcançará a tartaruga nem, portanto, poderá ultrapassá-la. Esse paradoxo vale-se fortemente do conceito de referencial. Dada uma corrida somente de Aquiles, sem estar contra ninguém, seu movimento é ilimitado. Ao se colocar, porém, a tartaruga, cria-se um referencial para o movimento de Aquiles, que é o que causa o paradoxo.

De fato, o movimento dele é independente do movimento da tartaruga; se adotamos a tartaruga como um padrão para determinar o movimento dele, criamos uma situação artificial em que Aquiles é regido pelo espaço da tartaruga. É uma visão do problema que pode remeter à mecânica quântica e ao Princípio da Incerteza formulado por Werner Heisenberg em 1927. Esse princípio rege que quão maior a certeza da localização de uma partícula, menor a certeza de seu momento, e isso é implicado pela existência de um observador no sistema físico. Analogamente, o paradoxo de Aquiles e da tartaruga tem sua interpretação mudada conforme a existência ou não da última, gerando o denominado Paradoxo quântico de Zenão , que em determinadas condições relacionadas à medição, Aquiles nunca alcançaria a tartaruga.

Se você ainda não entendeu este paradoxo, imagine um atleta querendo correr uma distância de 60m, para chegar no final do percurso ele primeiro terá que passar no ponto que corresponde a 1/2 (metade) do percurso, depois no próximo ponto que corresponde a 2/3 do percurso, depois 3/4 do percurso, para assim chegar a 4/5 do percurso e depois 5/6 do percurso e depois 30/31 do percurso ao ponto correspondente a 199/200 e depois ao ponto 5647/5648 do percurso (que numericamente corresponderia a 59,9893798 metros), tendendo assim a ser um número infinito de pontos antes que o corredor chegue ao final.

Como o infinito é uma abstração matemática que significa algo que não tem limite, o atleta jamais conseguiria chegar ao final do percurso (60 metros), pois ele teria que percorrer infinitos pontos para chegar a um final, se ele chegasse ao fim depois de percorrer o infinito, significaria que este infinito tem um fim, como isto não é possível, gera assim o paradoxo. "O problema por trás da Dicotomia, que é o mesmo que o do Aquiles, parece repousar na intuição de que o corredor demora um tempo finito mínimo para percorrer cada intervalo espacial sucessivo.

SOLUÇÃO

Como há infinitos desses intervalos, o tempo de transcurso seria infinito. Porém, sabemos que essa intuição é errônea: o tempo de percurso por cada intervalo é proporcional ao comprimento do intervalo (supondo velocidade constante). Esse ponto foi apontado por Aristóteles (Física VI, 233a25), mas em outro trecho ele se confundiu com relação à presença de infinitos intervalos finitos de tempo (Física VIII, 263a15). Da mesma maneira que os intervalos espaciais somam 1 na série convergente, os intervalos temporais também o fazem. O corredor acaba completando o percurso!

A solução clássica para esse paradoxo envolve a utilização do conceito de limite e convergência de séries numéricas. O paradoxo surge ao supor intuitivamente que a soma de infinitos intervalos de tempo é infinita, de tal forma que seria necessário passar um tempo infinito para Aquiles alcançar a tartaruga. No entanto, os infinitos intervalos de tempo descritos no paradoxo formam uma progressão geométrica e sua soma converge para um valor finito, em que Aquiles encontra a tartaruga. Outra solução é que esse é um raciocínio infinitesimal, em que cada objeto move-se infinitamente por distâncias que vão reduzindo-se infinitamente a cada etapa, o que só seria possível se as dimensões de cada objeto pudessem ser abstraídas, como se fossem pontos materiais, o que não ocorre, no mundo físico, pois as leis da mecânica clássica (de Newton) não se aplicam em espaços inferiores ao comprimento de Planck.